
NoSQL
Data Base Managing System

Pedro Guimarães

MongoDB Team's View | Problems

● Development speed: break 40 year relational paradigm;

● Scale: Adapted to new hardware - parallelism, multicore, cloud, etc.;

● Scalability issues, adapt to "Big Data";

● Complex data: object to object, polymorphism;

Vertically Horizontally

small box -> bigger box small box -> more boxes

One problem or failure means
whole system down

Failures have to be solved and
the system keeps working, but

may not be safe

MongoDB Team's View | Scaling alternatives

"Como propor um novo modelo de dados útil e funcional
diante dos paradigmas de programação modernos?"

chave/valor? Muito limitada.
xml? Não é intuitivo nem ágil o suficiente.

document-oriented, não-relacional?
↓

JSON - Java Script Object Notation
● Padronização RFC, garante portabilidade

MongoDB provê um console para gerenciamento e acesso direto aos dados,
baseado em javascript (mongo).

A linguagem de queries do MongoDB é o próprio JSON.

MongoDB Team's View | Guiding concepts

JSON Datatypes:
1. null
2. number
3. string
4. boolean
5. objects/documents
6. arrays

Relacional MongoDB

Database Database

Table Collection

Row Document (Object)

Dot Notation || Mongo Query Language

db.collection.method({ paramaters(JSON) });

Basic structure of the MongoDB

{
 _id: "Q33",
 x: 3,
 y: "abc",
 z: [1,2]
}

Para obter este objeto, seria necessária apenas a seguinte query:

db.mycollection.find({ " _id" : "Q33" });

A seguinte query:

db.mycollection.insert({ " _id" : "Q33", "x":3, "y:"abc", "z": "[1,2]" });

Produzirá o seguinte resultado na base de dados:

CRUD | A sample document!

Uma maneira possível de representar este objeto em um banco de dados relacional:

Tabela T:

CRUD | A sample document!

P x y

Q33 3 "abc"

P z

Q33 1

Q33 2

Para obter este objeto, seria necessária a seguinte query:

select * from T, T_Z where T.P = T_Z.P and P= "Q33";
ou

select * from T join T_Z on (T.P = T_Z.P) where P="Q33";

Tabela T_Z:

CRUD | Creating a document

Analogous SQL query:

CRUD | Updating a document

Analogous SQL query:

Update operations can increase the size of the document. If a document outgrows its
current allocated record space, MongoDB must allocate a new space and move the
document to this new location.

To reduce the number of moves, MongoDB includes a small amount of extra space, or
padding, when allocating the record space. This padding reduces the likelihood that a
slight increase in document size will cause the document to exceed its allocated record
size.

"Records and documents are almost the same thing,
but records have some more space in the end,

since a record actually contains the document!"

Record:
[[document] + [free space (padding)]]

Obs.: Mongo has a 16MB per document limit. In order to store large files, mongo
has "gridFS".

CRUD | Updates & moves

http://docs.mongodb.org/manual/reference/glossary/#term-record-size
http://docs.mongodb.org/manual/reference/glossary/#term-padding

The instructions:

t = db.mycollection;
t.insert({ _id : 2, "z" : 17 });
t.update ({_id:2}, { $push: {"array":14} })
t.update ({_id:2}, { $push: {"array":"fifteen"} })
t.update ({_id:2}, { $push: {"array":"fifteen"} })
t.update ({_id:2}, { $addToSet: {"array":"16"} })
t.update ({_id:2}, { $addToSet: {"array":"16"} })
t.update ({_id:2}, { $addToSet: {"array":"16"} })

Will result in:

{ "_id" : 2, "array" : [14, "fifteen", "fifteen", "16"], "z" : 17 }

CRUD | Updates

References

References offer a "normalized" structure for mongo documents.

Embedded documents capture relationships between data by storing related data in a
single document structure.

Embedded data

MongoDB indexes use a B-tree data structure. In other words, indexes in Mongo DB are a B-
tree key (doc, location). One might define a key in either ascending or descending order, and it
will serve both ways, since all the mongo algorithm has to do is choose whether to read the tree
from right to left, or left to right.

● _id is implicitly called, all other indexes must be explicitly declared;
● Can index array contents;
● Can index subdocuments and subfields;
● Indexes may be of any kind (string, integer, etc).
● Allows multi-part indexes;

Types of cursors used by the query operations in indexing:

● BasicCursor indicates a full collection scan.
● BtreeCursor indicates that the query used an index. The cursor includes name of the

index. When a query uses an index, the output of explain() includesindexBounds details.
● GeoSearchCursor indicates that the query used a geospatial index.

How to create an index:

db.collection.ensureIndex({ paramaters });

Indexing

Aggregation is a multi-stage pipeline that transforms the documents into an aggregated
result, resembling somehow a join in the relational world. In a parallell with the pipe concept,
it would feel like the following:

aggregate X | match | project | group | ...

Aggregation framework

Map/Reduce is more powerful than aggregation operations.
One can also use the hadoop conector already
avaliable to run map/reduce operations in mongo.

Map/reduce

Duas funcionalidades básicas do MongoDB:
Sharding & ReplicaSets

Spliting collections & Duplicating data

In different sets, you will have same documents.
In different shards, you will have different documents.

ReplicaSet:
1. Redundant copies of data;
2. Replicas, copies, backups;
3. Data safety (ds);
4. High avaliability (ha);
5. Disaster recovery (dr).

Shards:
1. Unique data;
2. Scalability;
3. Data partition.

Key features

A ReplicaSet (rs) in MongoDB is a group of mongod processes that provide redundancy and
high availability. The members of a replica set are:

Primary - receives all write operations

Secondary(ies) - replicate operations from the primary to maintain an identical data set.
Secondaries may have additional configurations for special usage profiles.

For example, secondaries may be non-voting, have read prefence in reads, or be arbiters.

ReplicaSets

http://docs.mongodb.org/manual/reference/program/mongod/#bin.mongod
http://docs.mongodb.org/manual/core/replica-set-members/#replica-set-primary-member
http://docs.mongodb.org/manual/core/replica-set-members/#replica-set-primary-member
http://docs.mongodb.org/manual/core/replica-set-members/#replica-set-secondary-members
http://docs.mongodb.org/manual/core/replica-set-elections/#replica-set-non-voting-members

Showing how simple MongoDB is at the console!

Showing how simple MongoDB is at the console!

An arbiter does not have a copy of data set and cannot become a primary. Replica sets may
have arbiters to add a vote in elections of for primary. Arbiters allow replica sets to have an
uneven number of members, without the overhead of a member that replicates data.

Arbiter

● Replicas have a priority level. Initially, all replicas have priority set as 1 (except arbiters).
● A member may have its priority set to 0, never being capable of being elected primary.
● Member with highest priority becomes primary.
● One member may have more than one vote.

http://docs.mongodb.org/manual/core/replica-set-elections/#replica-set-elections

Elections are essential for independent operation of a replica set. However, elections take time
to complete. While an election is in process, the replica set has no primary and cannot accept
writes. MongoDB avoids elections unless necessary.

Elections

Default replication is done asynchronously in MongoDB,
in concern for efficiency matters regarding distance issues in latency. Usually, the scenario is as follows:

Client →writes →Master/Primary →replicates →Slave/Secondary
 ↓
 Client ← Acknowledges

Optime is a tuple used by mongod to register the write operations in the database, with two 32 bit fields:

<time>, <ordinal>

So, for instance, you might have something like:

8nov2013 09:43:23 AM, 0
8nov2013 09:43:23 AM, 1
8nov2013 09:43:23 AM, 2

…
8nov2013 09:43:24 AM, 0
8nov2013 09:43:24 AM, 1

…

Obs.: since each field is a 32 bit value, mongoDB can not perform more than 4 billion operations per second!

So, knowing each server has its own optimes register, it is possible to know how big is the lag between mongod
instances, both in terms of time and number of operations.

Replication and Optime

Sharding divides the data set and distributes the data over multiple servers, or shards.
Each shard is an independent database, and collectively, the shards make up a single
logical database.

Sharding

db.users
{
 _id: 1,
 name: "mario",
 likes: ["ski", "soccer", "swimming",
"judo"],
 age: 19
}
{
 _id: 2,
 name: sonia,
 likes: [basketball, tennis, dance]
 age: 24
}
...
{
 _id: 143565,
 name: albert,
 likes: [malakamb],
 age: 57
}

To shard a collection, you need to select a shard key. It is an indexed field or an
indexed compound field. The shard key values are divided into chunks and
distributed evenly across the shards. To divide the shard key values into chunks,
MongoDB uses either range based partitioning (similar to Google's BigTable concept) or
hash based partitioning.

Sharding key

db.users
{
 _id: 1,
 name: "mario",
 likes: ["ski", "soccer", "swimming", "judo"],
 age: 19
}
{
 _id: 2,
 name: "sonia",
 likes: ["basketball", "tennis", "dance"]
 age: 24
}
...
{
 _id: 143565,
 name: "albert",
 likes: ["malakamb"],
 age: 57
}

One could think about sharding such
collection in different ways. Either _id,
name or age would be great
candidates.

In a realistic environment, we will have a mongo router filtering and centralizing accesses
to the database. This process is a lightweight one called mongos.

mongos then will communicate to another process called config server, which is a light
mongod process, without actual data, but with metadata about the entire server logical
structure configuration. These servers send the requests to the appropriate mongod
instance from the Shards/ReplicaSets.

Sharding + RaplicaSets!

Possible strategies:

1) Mantain a "trusted environment", where you can lock down at the network layer all
relevent tcp ports;

2) Use MongoDB authentication:
2.1) Using --auth for security client access, through user/password strategy;
2.2) Using --keyFile for intra-cluster security, granting that all servers that compose

the grid are genuine and can be, therefore, trusted.

3) On top of that, one might use SSL to add encrypting to the messages exchanged
within the cluster. But in order to do so, it is required to compile MongoDB especiffically
for that, using the --ssl parameter.

Security

● 2D only
● Additional attribute ('compound')

Suppose you have a collection named "places" that looks like the following:

{
_id: …,
loc: [20.8, 43.1],
type: 'coffee',
…

}

To optimize accesses, one could add an index to this collection by doing: db.places.ensureIndex({"loc":
"2d"})

And when you went for a query such as: db.places.find({ loc: { $near: [20, 40], $maxDistance: 5 } })

That would return all results within that range of a maximum distance of 5 between those measuring units.

There is also a geoNear command implemented. That allows queries such as:

$within: { $center || $box || # $polygon }

Mongo also supports a spherical: true parameter to treat coordinates as spherical, for points at the surface of
the Earth, for example.

Geospatial indexes

Cursos: https://education.mongodb.com/courses

MongoDB free online courses

Cursos atualmente disponíveis:

1. MongoDB for Java Developers
2. MongoDB for Node.js Developers
3. MongoDB for Developers
4. MongoDB for DBAs

https://education.mongodb.com/courses

Gratidão!
Pedro Guimarães

pedrodpg@lncc.br

