Emergence and algorithmic information dynamics of systems and observers
Published: 23-05-2022
Abstract:
One of the challenges of defining emergence is that one observer’s prior knowledge may cause a phenomenon to present itself as emergent that to another observer appears reducible. By formalizing the act of observing as mutual perturbations between dynamical systems, we demonstrate that the emergence of algorithmic information does depend on the observer’s formal knowledge, while being robust vis-a-vis other subjective factors, particularly: the choice of programming language and method of measurement; errors or distortions during the observation; and the informational cost of processing. This is called observer-dependent emergence (ODE). In addition, we demonstrate that the unbounded and rapid increase of emergent algorithmic information implies asymptotically observer-independent emergence (AOIE). Unlike ODE, AOIE is a type of emergence for which emergent phenomena will be considered emergent no matter what formal theory an observer might bring to bear. We demonstrate the existence of an evolutionary model that displays the diachronic variant of AOIE and a network model that displays the holistic variant of AOIE. Our results show that, restricted to the context of finite discrete deterministic dynamical systems, computable systems and irreducible information content measures, AOIE is the strongest form of emergence that formal theories can attain.